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Abstract. We set 0-1 the theory for a Lattice Boltzmann algorithm capable of mimicking 
the Navier-Stokes equation for fluid flow in two dimensions ( 2 ~ ) .  The solution satisfies 
criteria of Galilean invariance and isotropy, and viscosity is obtained by direct reference 
to the viscous term in the Navier-Stakes equation. I t  is passible to specify directly the 
viscosity and other hydrodynamic parameters without reference to specific collision modes. 
The model was tested by simulating 2 D  Row through a plane channel (Poiseuille Raw). A 
parabaiic riow pro6ie was obtained, in exceiient agreemeni with the anaiyticai Xavier- 
Stokes solution. We conclude that the algorithm can be uscd to model m fluid Row. 

1. Introduction 

The Lattice Boltzmann (LB) approach has been proposed as a method for solving 
problems of fluid flow by the direct computation of local Boltzmann equilibrium upon 
a regular lattice in ZD or 3~ [ l ,  21. The LB approach originated as a by-product of the 
derivation of wholly discrete Lattice Gas Cellular Automata (LGCA) models [3,4]; 
however, recent demonstrations of the capability of the LB approach, for example the 
simulation of flow past a symmetric sudden expansion [5], indicate that in many 
applications it is superior to LGCA [ 6 ] ,  despite the latter's apparent advantage of only 
employing integer arithmetic. 

In section 2 we present the analysis for an LB model for mimicking the Navier-Stokes 
equation for fluid flow in 2 ~ .  The equilibrium (non-viscous) term is well known and 
not original, although our version of its derivation (section 2.3) is perhaps easier to 
understand than most. The non-equilibrium term and its derivation (section 2.4) is, 
we believe, original, in that it is obtained by direct reference to the viscous term in 
the Navier-Stokes equation, raiher than by expanding aboui ihe LEI equiiibrium term 
(as in other models). Viscosity is obtained without referring to specific collision modes; 
therefore it is possible to specify directly the viscosity and other hydrodynamic para- 
meters. The solution satisfies criteria of Galilean invariance and isotropy. Generaliz- 
ation of the model to include 3~ flows has not been considered here hut should be 
straightforward. 

a plane channel (Poiseuille flow). As expected, a parabolic velocity profile was obtained, 
while the computed maximum velocity a t  the centre of the channel differed from the 
Navier-Stokes solution by less than 2%. 

0305-4470/92/123559+08$04.50 @ 1992 AEA Technology 3559 

Ca...:-- 2 r l ~ ~ ~ - ; h ~ ~  +ha ~-..I;,-,+;A- nfihn mnrlnl tn +ha .imail?t;nn nF,n R n w  th.--..nh 
UCCL,",, , Y z ~ c L I Y ~ a  ,,,r " p p " . ' Y L . " . l  11. L..b I I I " Y L I  I" L . l U  aL...".Y..".. "1 A Y  l l " W  .,,,""E.. 



3560 

2. Analysis 

2.1. Orientation 

In the following we shall use the notation 1;(r, t )  to denote the density f of particles 
moving in direction i ( i  = 0, I ,  2, . . . , 6 ,  i = 0 denotes stationary particles) at node r on 
the ZD hexagonal grid, measured at time f. In the LB model f is a continuous variable 
w l l l l r  :, , 

The aim of this analysis is to construct an LE model leading to the Navier-Stokes 
equation. In doing so we will find explicit forms forf;(r, t). 
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2.2. From LB f o  Navier-Sfokes 

We write the LE equation as [4] 

1;h t + l ) = A ( r - c , ,  f ) + &  (1)  

CO = 0 

where A,  is the collision function and c, are the directional vectors at a node: 

J5 
r =-IC---., J3 

2 ’  -4 2 ‘ r = L e + - <  
- 1  2- 

J3, 
5 - 2x -- Y 

--I- J5 
2 -  2x+-y^ C -I* 

2 2 
A A 

C )  = -x c, = x. 

The density p(r ,  f )  and velocity u(r ,  f )  at a node are defined by 

p(r ,  O = M r ,  0 = 1 1 ; ( r - C ; ,  f - 1 )  

p ( r , f ) u ( r , ~ ) = ~ c j l ; ( r , f ) = ~ c , l ; ( r - c ; , f - l )  
(3 )  

for collisions conserving density and momentum. Taking the Taylor expansion to first 
urucr, ( 1 1  may oc wriiicn ..>._ I . \  L .  

(4) 
JA - ( r, t )  =1;( r - c, ,  f ) -1; ( r, f ) + A; = -e. . Vl;( r, t )  + A j .  
J f  

In this equation the time derivative is with respect to fixed coordinates. The time rate 
of change following the fluid (the substantive derivative) is given by 

DL- ”+ U. 01; = ( U  - c,) . V i + A , .  
Df df 

Henceforth we abbreviate J(r, t )  as 1;, and likewise with other variables. Noting that 
the time and space derivatives of c, are zero, and that [4] 

X A , = O  1 c,A, = 0 ( 6 )  

we obtain the continuity equation by summing (5) over i: 

*+ V (  up)  = 0. 
J f  

(7) 
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Multiplying ( 5 )  by c, and summing over i yields 

Subtracting U times (7) from (81, and using tensor notation, we find that 

( ,  (9) p- u " + p u ~ V P u "  = V O  -1 ( u " - C p ) ( u p  -cr)f.). J 

J t  

We now make contact with the Navier-Stokes equation, 

a 
p-uu"+pu~V@uY=V@LTYP (10) J t  

by equating the right-hand side of (9) with the stress tensor pop 

(11) = -pp  + ur"P - - - ~ ( u m - c p ) ( u " c f ) f .  

where U"' represents the viscous effects. To obtain the Navier-Stokes equation we 
need to find 1; such that (in ZD) [7] 

-1 ( u " - c p ) ( u P - c f ) f .  

= - p P  f 7 l ( V V  + V B U "  -S"PV'uY)flS"PV'u' (12) 

f ;=f ;+s f ;  ( 1 3 )  

we follow the analysis by separately considering an equilibrium term f ;  and a viscous 
term Sf;; 

where 7 and are the coefficients of viscosity. By writing f; as 

-1 (U" - cp)( U P  - c f ) f ;  = - p P  (14) 

-1 ( u " - c p ) ( u P - c f ) 8 f ; =  ~ ( v ' " U ~ + V ~ u " - S ~ ~ V ~ u ~ ) + ~ a ~ ~ V ~ U ~ .  (15) 

2.3. Equilibrium distribution 

In  the following analysis it is convenient to work in terms of normalized particle 
number ni, 

n, = i J P  (16) 

such that (equation (3)) 

n,+Z  n, = I c,n, = U (17) 

where the summation is now taken to be over just the six non-stationary components. 
We obtain the equilibrium solution by imposing a Boltzmann distribution locally: 

n,(uj=n,(a)z &Y ."(U) = ?i"(!$Z ( i s )  

where the partition function Z is given by 
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For U = 0 all n; will be equal (in a single-velocity model), but may be different from no: 

R D Kingdon el al 

We proceed by expanding the exponential in (18) to order p2: 

Noting that (equation (2)) 

x cpcp = 3 8 4  

we find (to second order) 

n , ( u )  = n(O)(l + p .  c,+f(p.  cj)2-~n(o)") 

Multiplying n , ( u )  by c, and summing, we obtain 

n o ( u )  = n,(0)(1 -?n(O)pL'). (23) 

u " = I : c P n i ( u ) = n ( 0 ) p ~ ~ c c P c p  (24) 

and therefore (equation (22)) 

Back-substituting p in (23) gives 

1 U . C .  ( U . C , ) '  
n; (u )=n(O)  1+- [ 3 n ( 0 ) + 1 8 n ( 0 ) 2 - 6 , 0  ( 2 6 )  

(27) 

To determine the free parameter n,(O) we need to impose another condition upon 
the system. In particular, Galilean invariance has not yet been taken into account. This 
condition may be expressed as follows: 

1 c:cynj(0) =I: ( c y -  U " ) ( C f  - u e ) n , ( u )  (28) 

where the summation includes stationary particles. Expanding the right-hand side, we 
obtain 

x cl'Cf(fl((0)- n , ( u ) )  

(29) . . * v  -0 ..,.. , . . e r .  "(I -I..\ L.,ct.,er...  I..\--., ,.*,o = -  U ~ ' ; N ; , " , - U  L L ( r ' j \ " , T u  U i . n , , u , -  U U .  

Therefore we find 

x (n ; (O) -n ; (u ) )  = -(U:+ U;,) = - U 2  (30) 
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where the summation no longer includes stationary particles since co=O. Using (17) 
we obtain 

(31) %(U) = n,(O) - u2 

and hence (equations (27) and (31)) 

or  

n,(O) = f . (32) 

n(O)=,\ (33) 

f o = p ( t - U 2 ) .  (34) 

Therefore (equation (20)) 

and the equilibrium distribution is given by (equations (16), (26) and (27)) 

P 
12 

f; =- (1 +4u.  C, +E(u. c , ) ~ - ~ u ' )  

2.4. Viscous effects 

To determine the viscous term Sl;, we adopt the general forms 

Sl; = A V ' u ' f B c ~ ~ f V ~ u "  Sfo= C V ' U Y  (35) 
where A, B and C need to be found. Using these expressions in equation (15), i t  can 
be shown that 

7 l ( V " U ~ + V P U "  - S ~ @ V ~ u ~ ) - t @ = ~ V ~ u ~  

=-3S"PAV'u ' -~B(V"u'+VP~" +S"PV"u') 

-u"uP(6A + 3 8  + C ) V y u y .  (36) 
In obtaining the right-hand side terms of this equation, use has been made of the 
following: 

(i) equation (22); 
(ii) the conditions 

xc:=o 1 cpcfc:=0 (37) 

(iii) the isotropy of the fourth-order term [4, E]: 

c:cfc:c: =X(S"PS'"+S"YS'~"S6""6"') 

Taking a double trace (for which 8"" = 8" = 2, S"'6"' = 8"" = 2), we obtain 

1 c:c:c:c: = 6 =  8X (39) 

i.e. the coefficient for the '5' term in equation ( 3 6 )  is X = 3/4. Equating terms in (36): 

6A+3B+ C = 0. (40) -2 B = '1 -3A-25 = c -  1) 
Therefore 

B = 2  31) A = f ( 2 n  -0 c=2< (41) 
the viscous terms then reading as follows (equation (35)): 

8l; =f(21)-5)V'u'-~ncpcPvPu- S f o = 2 p ' u y .  (42) 
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2.5. Summary of model 

We have constructed an LE model which leads to the Navier-Stokes equation. Galilean 
invariance and isotropy are built into the model. The calculation steps are as follows: 

(i) Calculate density and velocity using data from the previous time step 
(equation ( 3 ) ) .  

(ii) Calculate the gradients as follows: 

R D Kingdon er a1 

noting that 

(iii) C: :ulateL(r, 1 )  and fo(r ,  I )  as follows (equations ( 1 3 ) ,  ( 3 4 )  and ( 4 2 )  

2.6. Physical parameters 

In the LB model it is possible to specify directly the initial density and velocity (typically 
as an equilibrium distribution). It  is also possible to specify the coefficients of viscosity; 
usually one can set J=Oi with the kinematic viscosity being given by U = n / p .  

The pressure of the system is given by ((14), ( 3 4 ) )  

pa"@ =;I (U" - c ; ) ( u p  - c f ) (  1 + 4 u y c / + 8 (  U ~ C : ) ' - ~ U ~ ~ )  +pu"u#(( f -  U"). ( 4 6 )  

Taking (Y = 0, we find 

P 
4 

p = - ( I  -U". 

Sound velocity is given by 

c, = Japiap=f-O(u4). 

( 4 7 )  
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3. Application to flow in a plane channel 

As a verification exercise the proposed LB algorithm was used to compute the flow 
profile for steady flow through a 20 plane channel in response to a uniform pressure 
gradient. For incompressible viscous Row with no-slip boundary conditions at the 
walls, the Navier-Stokes equation gives, for the velocity of fluid along the channel 
(4 [ 6 , 7 l ,  

where x and y are measured parallel and perpendicular to the channel respectively 
( y  = 0 at the centre of the channel), and W is the width of the channel. If F is the 
force on the fluid in length L of channel, the pressure gradient may be written 

where Z is a notional distance in the third direction. Writing the volumetric density 
p in terms of the density per lattice site p., 

where I and w are the length and width of a single lattice site ( I =  1, w = f i / 2 ) ,  we 
obtain for the fluid velocity 

If L has the same number of lattice spacings as W, this expression gives 

This equation is in a form which allows a direct comparison with simulation. In 
the LB model the channel was specified to be 32 lattice points square, with bounce-back 
boundaries top and bottom and periodic boundaries left and right. A force was applied 
to the (initially static) fluid by replacing 0.001 stationary particles with 0.001 +x-moving 
particles at each non-boundary lattice site on each time step. The kinematic viscosity 
and density per lattice site were specified as 1.0 and 0.2 respectively. Noting that at 
each bounce-back boundary the true wall position is half a lattice spacing outside the 
grid [SI, the width of the channel is exactly W = 32 A / 2  lattice spacings. 

Using these values the LB program was run for 1000 time steps. The resulting flow 
profile, which was steady after 400 time steps, is plotted in figure 1 .  Also plotted is 
the parabolic profile obtained using the above equation. The fit is excellent; at the 
centre of the channel the simulation and Navier-Stokes values differ by less than 2%. 

4. Conclusion 

We have derived and verified an LB algorithm which can be used to simulate 20 

Navier-Stokes flow. 
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Figure 1. Cross section of 211 plane channel, showing the fluid velocity along the channel. 
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